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Abstract: The characteristics of lipid assemblies are important for the functions of biological membranes.
This has led to an increasing utilization of molecular dynamics simulations for the elucidation of the structural
features of biomembranes. We have applied the self-organizing map (SOM) to the analysis of the complex
conformational data from a 1-ns molecular dynamics simulation of PLPC phospholipids in a membrane assembly.
Mapping of 1.44 million molecular conformations to a two-dimensional array of neurons revealed, without
human intervention, the main conformational features in hours. Both the whole molecule and the characteristics
of the unsaturated fatty acid chains were analyzed. All major structural features were easily distinguished,
such as the orientational variability of the headgroup, the mainly trans state dihedral angles of the sn-1 chain,
and both straight and bent conformations of the unsaturated sn-2 chain. Furthermore, presentation of the trajectory
of an individual lipid molecule on the map provides information on conformational dynamics. The present
results suggest that the SOM method provides a powerful tool for routinely gaining rapid insight to the main
molecular conformations as well as to the conformational dynamics of any simulated molecular assembly
without the requirement of a priori knowledge.

I. Introduction

Accumulating information implies the importance of the
structural features of lipid assemblies in determining the
functional properties of biological membranes.1 Elucidating the
structural characteristics of the variety of lipid assemblies is
thus of fundamental importance. In addition to traditional
experimental methods of structural biology, molecular dynamics
(MD) simulations have lately been increasingly used in the
studies of biological membranes.2-5 Simulations produce a large
amount of data that should be efficiently analyzed to gain insight
to the structural and dynamic features of the system. A typical

procedure is to calculate a variety of structural parameters, to
visualize the molecules frame-to-frame, and to analyze confor-
mations by using clustering algorithms that assume the existence
of clusters and may require advance selection of cutoffs for
cluster size or number of clusters.6-9 Especially in the case of
large molecular assemblies such as lipid bilayers, these methods
are tedious and not necessarily able to provide an all-inclusive
view of the structural characteristics.

Neural network-based analyses have been extensively used
to handle complex multidimensional data in many fields of
science and technology.10-13 This methodology has been proven
efficient in cases where traditional analysis would be time-
consuming or even incapable of extracting any comprehensive
view.14-22 Although no a priori knowledge of main lipid
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conformations is available from the biomembrane MD simula-
tion trajectories, the self-organizing map (SOM) based analy-
sis23,24 can provide an efficient means to handle the data. The
idea of SOM is to transformn-dimensional input data vectors
consisting of, e.g., parameters that determine molecular con-
formation into a two-dimensional discrete map. The input
vectors that share common features are projected to the same
or neighboring neurons on the map.23,24 The SOM-based
approach could be routinely utilized in the analysis of MD data,
as the SOM method implemented in free-ware software is
available25 and requires no extensive knowledge of neural nets.
Furthermore, the analysis can be performed in an up-to-date
workstation or personal computer in hours.

The potential uses of the information obtained from SOM-
based analysis of lipid conformations include selecting relevant
structures for electronic structure calculations of, e.g., specific
interactions taking place at active sites, as well as using
molecular assemblies of main conformations as good “pre-
equilibrated” starting structures for further simulation studies.
Moreover, the main conformations and their relative probabilities
can offer a realistic basis for the construction of minimalistic,
nonatomistic models26 that rely on the prevailing conformational
states of the constituent molecules. In the field of membrane
biophysics, these models are able to address large-scale coop-
erational structural and dynamic properties of lipid assemblies
(e.g., phase transitions and domain formation), which are not
reachable by MD simulations. Furthermore, SOM-based analysis
of lipid conformations provides a sound basis for studies on
various characteristics of membrane conformation, such as the
degree of correlation between neighboring lipid molecules.

The SOM-based conformation analysis is also directly
applicable to other kinds of molecular simulations of various
molecular species. In fact, the simulation of a relatively simple
five-amino acid peptide has been analyzed by using an
automated approach based on neural nets.21 Although that study
was performed for a small peptide, it promoted the idea of using
neural nets also in the analysis of far more complex molecular
systems. In relation to molecular structure, SOM analysis has
been used to classify protein-databank-based 3D structures of
nine amino acid sequences.22

We have applied SOM in the analysis of the 1.44 million
lipid conformations from a 1-ns MD simulation of a 1-palmitoyl-
2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) phospho-
lipid membrane (Figure 1), reported in ref 5. The PLPC
membrane was simulated to gain information on the effects of
double bonds of the sn-2 fatty acid chains. Despite their
physiological importance, membranes of polyunsaturated phos-
pholipids had not been considered earlier in MD simulation

studies. In the present work we demonstrate the possibilities of
the SOM approach to aid in the analysis of a MD simulation
trajectory by presenting the results for the main conformations
of the whole lipid molecule as well as the sn-2 chains. We chose
the sn-2 chain to demonstrate that, in addition to getting an
overview of the main conformational features, the SOM-based
analysis can also be used in zooming into more detailed small-
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Figure 1. Molecular structure of a PLPC molecule (top) showing the
numbering of the bonds. The 41 dihedral angle values over these bonds
were used to describe the molecular conformation. Also a snapshot of
the primary simulation box containing the replicated monolayer
assembly from the molecular dynamics simulation is shown (bottom).
For clarity, the hydrogens and water molecules are not shown. The
simulation produced 1 440 000 lipid conformations that were used as
input data for the self-organizing map (SOM).
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scale characteristics. Additionally, we show the capability of
this approach to address the conformational dynamics of
individual molecules by determining a trajectory of a single lipid
in the map.

II. Methods

A. Simulation and Data Preparation. The lipid molecule used in
the simulated bilayer system is shown in Figure 1. The PLPC molecule
consists of a glycerol backbone (Cg1-Cg3) to which the saturated
palmitate chain (16:0), the diunsaturated linoleate chain (18:2∆9,12), and
the PC headgroup are attached at the sn-1, sn-2, and sn-3 positions,
respectively. The 36-molecule piece of the monolayer was used to
model an infinite bilayer by applying rotation-reflection in the direction
of the layer normal and conventional periodic boundary conditions in
the plane of the layer.5 A 1-ns simulation was performed with the
CHARMm software.27 A snapshot from the end of the simulation is
shown in Figure 1 for the monolayer assembly presenting the primary
simulation box. We refer to our earlier paper5 for details of the
simulation methodology and the results from a traditional trajectory
analysis. The coordinates of the atoms were saved every 0.25 ps, and
hence the data subjected to the present analysis consisted of 40000×
36 PLPC conformations, i.e., 1 440 000 in total.

The conformation of the PLPC molecule was described by the
sequence of its 41 dihedral angle values (see numbering of the bonds
in Figure 1). The values of the angles were given in the scale of-90°
to 270° over the bonds 9, 11, 34, and 37, and in the scale of 0° to 360°
over other bonds. This was due to the differences in the main
conformations of the bonds; it was necessary to eliminate the possibility
that jumps of nearly 360° would appear in the value of the angle. For
instance, in the case of single bonds the scale could not be set from
-180° to 180° as the fluctuations around the trans state ((180°) would
cause the appearance of two clusters with negative or positive values.
In addition to performing the analysis for the whole molecule, molecular
parts also were treated separately. Here the analysis is reported for the
whole molecule (angles 1-41) and its unsaturated sn-2 chain (angles
26-41). Visualization of molecular structures was carried out with the
QUANTA software.28

B. SOM Analysis. The SOM can be used to mapn-dimensional
input vectors to the neurons in a two-dimensional array, where the input
vectors sharing common features end up on the same or neighboring
neurons.23,24 This preserves the topological order of the original input
data. Also, the map is able to reflect the variations in the statistics of
the data and to select good features to approximate the distribution of
the data. Each neuron is associated with ann-dimensional reference
vector, which provides a link between the output and input spaces.
The lattice type of the array of neurons, i.e. the map, can be taken as
rectangular, hexagonal, or even irregular. However, hexagonal orga-
nization is often suggested, as it best presents the connections to the
neighboring neurons. The size of the map as defined by the number of
neurons can be freely varied depending on the application; the more
neurons the more details appear. Present SOM analysis software also
provides tools to estimate the map size for each data set. The SOM
analysis includes an unsupervized learning process. First, random values
for the initial reference vectors are sampled from an even distribution,
the limits of which are determined by the input data. During learning,
the input data vector is mapped onto a particular neuron based on the
minimal n-dimensional distance between the input vector and the
reference vectors of the neurons. The neighbors of the central activated
neuron are also activated according to a network-topology-dependent
neighborhood function. For instance, the bubble neighborhood function,
which is a squared step function around the central activated neuron,
has been considered especially suitable for SOM.29 The common
procedure is to use an initially large bubble function, which is then

reduced during the learning to the level of individual neurons. The
reference vectors of the activated neurons are then updated. This
procedure features a local smoothing effect on the reference vectors of
the neurons in the neighborhood, leading eventually to a global ordering.
In contrast to supervised learning strategies, where number and
characteristics of the clusters need to be known beforehand, the SOM
analysis, i.e., the mapping of input data into neurons representing
characteristic features, does not require any a priori knowledge.23,24

In the present application, the sequence of dihedral angles pertaining
to a PLPC molecule in a simulation snapshot is used as a 41-
dimensional input vector. By varying the size of the map, the level of
features affecting the organization can be varied. With a big map, small-
scale features start to have an increasing effect. However, analysis of
smaller scale features can also be performed with a small map by
covering only certain parts of the molecule. Maps of 100 neurons in a
10× 10 hexagonal arrangement were chosen for the final analysis since
they provided a clear picture of the main conformational features while
also allowing the visualization of some minor structural characteristics.
The bubble neighborhood function was used. Every tenth conformation
for each molecule was taken for the learning process after which all
molecular conformations were assigned to the neurons of the trained
map. To visualize the results, the reference vectors of each neuron were
used to construct the corresponding molecular structures, reference
conformations. To aid in the visual comparison of the molecular
conformations, the glycerol backbone bond Cg2-Cg3 (bond number
6) was positioned in the same way in all the reference conformations.
In the case of the sn-2 chain, the dihedral angles constituted a 16-
dimensional input vector. The analysis of the conformations of the sn-2
chains was performed in an identical manner to the whole molecule.
However, in the construction of the reference conformations, the first
double bond C9-C10 (bond number 34) was aligned to aid the
comparison. It should be kept in mind that the reference conformations
do not necessarily occur in the actual simulation, but should be
considered as an abstraction of the common features of the real
conformations that share this reference vector.

To introduce this novel methodology, we have here performed the
SOM analysis with basic procedures according to the instructions of
the software. However, the procedure can be optimized for certain
molecular systems, for instance, by adding extra conformational
parameters (such as intramolecular distances) to the input vector, and
by coupling certain dihedral angle sequences, presenting similar shape,
together to end up in the same neuron. Also, if the minimum image
convention would be incorporated to the software, the adjustment
performed here for the dihedral angle scales would be unnecessary.

III. Results and Discussion

A. Main Conformations. (i) Whole Molecule. The map for
the whole molecule presenting the total number of hits (number
of assigned input vectors) for each reference vector is shown
in Figure 2, together with the reference conformations of the
most representative neurons. Generally, the headgroups and sn-1
chains are straight continuations of the glycerol backbone,
whereas the sn-2 chain begins perpendicularly to the glycerol
backbone. However, the reference conformations of, for in-
stance, neurons 61 and 81 show structures where also the sn-1
chain is initially perpendicularly oriented. The reference con-
formations of the molecule are visually very distinct if major
torsional differences occur near the glycerol backbone.

A general feature of the headgroup structures is that mostly
the phosphorus atom is approximately in-line with the glycerol
backbone. This is followed by a tilt that is responsible for the
calculated average tilt angle of 14° of the P-N vector with
respect to the membrane surface.5 However, neuron 96 shows
an example of the choline group pointing upward as an almost
straight continuation of a glycerol backbone. Bending of the
choline groups toward the chains is also possible, as shown by
neurons 20 and 61.

(27) CHARMm, Molecular Simulations Inc., an updated version of the
original software: Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States,
D. J.; Swaminathan, S.; Karplus, M.J. Comput. Chem.1983, 4, 187.
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The sn-1 chains (the chains on the right-hand side) in the
depicted lipids present rather straight conformations, which is
in accordance with the result that about 80% of their dihedral
angles are in the trans state.5 The sn-2 chain appears in bent
conformations, where the tilt occurs most frequently in the
region of the first carbons due to the perpendicular orientation
of the chain beginning, and in the middle due to the unsaturation.
The analysis of the sn-2 chains is presented in more detail below.

In all, the map demonstrates the conformational flexibility
of the phospholipids and indicates that no well-defined structural
clusters exist. However, the knowledge of the most popular
conformations helps in getting a realistic view of the lipid
structures. The map demonstrates the wide variety occurring in
the chain orientations. The degree of disorder due to the
entanglement of the chains is high and, due to the extended
conformations, the molecules may interact also with other than
the nearest neighbors only. The many different characteristic
lipid conformations and their flexibility should be kept in mind
when considering, e.g., the possible interaction with lipases.

(ii) sn-2 Chain. The map for the sn-2 chain of the PLPC
molecule presenting the number of hits per neuron is shown in
Figure 3, together with the most popular reference conforma-
tions. The unsaturation of the sn-2 chain is often thought to
cause the appearance of heavily tilted conformations due to the
cis state of the double bonds. However, in the case of two or
more cis double bonds, the conformation of the double bond
region is dominated by the dihedral angles over the single bonds
located between the double bonds, i.e. the single bonds 35 and
36 in the case of PLPC. The dihedral angles over these bonds
have values of approximately(120°. With the combinations
of +120°/+120° (PP) and-120°/-120° (MM), the orientation
of the double bonds with respect to the bilayer normal remains
almost the same, whereas with the+120°/-120° (PM) or
-120°/+120° (MP) combinations, the orientations of the double
bonds differ by some 90°. Thus, diunsaturation may result both
in straight and tilted conformations in the double bond region.

From the reference conformations shown here, neuron 1
shows an example of a straight conformation. There the single

Figure 2. SOM of the PLPC molecule showing the number of hits with the size of the depicted neuron. The reference conformations related to
the most popular neurons (>25 000 hits) are shown.
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bonds of the chain are mainly trans, and the double bond region
is in the MM state, thus not forming a tilt in the chain. An
utterly tilted conformation is displayed by neuron 33 where the
MP state of the double bond region together with some gauche
states of the single bonds cause a heavy tilt to the chain. Overall,
this conformation is U-shaped and demonstrates a possibility
of the methyl end of the chain to occasionally reside at the level
of the glycerol backbone in the membrane. This kind of
conformation is also visible in the reference conformation of
neuron 94 in the map of the whole molecule (Figure 2). We
have speculated a role for these tilted conformations in the
experimentally observed increased permeability due to unsat-
uration.5 Such a conformation might also serve as a preceding
stage for the appearance of extended conformations where the
sn-2 chain penetrates to the water phase. These structures have
been suggested to have a role in the interaction with peripheral
proteins and in the early stage of membrane fusion.1,30Naturally,
the overall tilt can be caused also by the single bond regions of

the chains such as in the reference conformation 41 in Figure
3.

The appearance of local conformations in the maps of larger
molecular fragments is illustrated in Figure 4. In an earlier paper
we discussed the different internal structures of the double bond
region in the PLPC membrane.5 The PP, MM, PM, and MP
structures constituted 32.1%, 39.0%, 9.3%, and 19.0% of the
conformations, respectively, as calculated directly from the
simulation. The maps of the whole molecule and the sn-2 chain
clearly display these distinct regimes for the conformations of
the double bond region. As the double bond region has a smaller
effect on the conformation of the whole molecule, the color-
coded mapping of the main conformations of the double bond
region appears more diffuse in the SOM of the whole molecule
than in the SOM of the sn-2 chain. However, the appearance
of clusters for the distinct double bond region conformations
emphasizes the strength of SOM to take into account important
molecular features: although in this kind of approach the lack
of a priori knowledge makes the validation of the training
difficult, the analysis clearly gives meaningful results.

(30) Holopainen, J. M.; Lehtonen, J. Y. A.; Kinnunen, P. K. J.Biophys.
J. 1999, 76, 2111.

Figure 3. SOM of the sn-2 chain of the PLPC molecule showing the number of hits with the size of the depicted neuron. The reference conformations
related to the most popular neurons (>20 000 hits) are shown.
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B. Conformational Dynamics.Conformational dynamics of
individual molecules can be studied by determining the trajec-
tories of lipids in the map, as illustrated for one molecule in
Figure 5. These transition paths also aid in distinguishing larger
conformational changes from the small-scale oscillations. The
average number of nodes visited by one lipid molecule during
the 1 ns trajectory was 23.5 in the map of the whole molecule
and 64.8 in the map of the sn-2 chain. Thus, if the map in both
cases presents the whole conformational space, the trajectory
is clearly not long enough for one molecule to visit all possible
conformations. The average time for one visit in each neuron
is mostly relatively small, on the order of picoseconds.
Especially for the sn-2 chain the average times are even shorter
than a picosecond. The large number of quick transitions
between closely related neurons dominates these average values.

The conformational mobility of the chosen molecule is close
to the average in the sense that it visits 25 neurons in the map
of the whole molecule and 65 neurons in the map of the sn-2
chain. The neuron 41 of the map of the whole molecule is
important for this lipid molecule due to both the number of
hits (∼18500) and the average time for one visit (Figure 5). Of
the other neurons that are important for characterizing the whole
lipid assembly, this molecule visited neurons 6 and 21. Neuron
6 is the more important of these and together the conformations
belonging to neurons 6 and 41 comprise 75% of the total
simulation time for this particular lipid. The main conformational
transitions occur between the conformations presented by
neurons 6 and 41 but, in fact, never directly. Instead, the other

neurons are briefly visited on the way. This is most likely due
to the several ways these popular conformations differ, and all
changes are not likely to occur at once. Despite the actually
rather similar dihedral angle sequences between the conforma-
tions, the sn-2 chain looks very different due to the change in
a state of the single bond 27. Also a change in the state of the
glycerol backbone bond Cg2-Cg3 (bond number 6) changes
the orientation of the whole headgroup and, additionally, there
are several local changes in the headgroup conformation. A good
example of smaller scale structural variations is the movement
between neurons 5 and 6. This transition occurs often and
requires mostly only minor changes (<10°) in the dihedral angle
values. Only the angles 3, 27, and 35 show more remarkable
changes of approximately 40°, 30°, and 20°, respectively.

In the map of the sn-2 chain the most important neurons for
the chosen molecule are 61 and 100 with the greatest number
of hits (∼5200 and∼9500 hits, respectively) and longest average
time for one visit in these neurons (Figure 5). However, there
are several other neurons where the lipid resides for relatively
long times, most importantly 26 and 81. Roughly, there seem
to be three main features in the transitions that take place: first,
diagonally across the map between the neighborhoods of
neurons 1 and 100; second, between the neighborhoods of
neurons 61 and 60; and third , between the neighbourhoods of
neurons 28 and 100. These main transitions occur via both
several intermediate conformations and directly.

Conclusions

Efficient methods of analyzing main conformations and
conformational dynamics from molecular dynamics simulations

Figure 4. SOM for the whole molecule (top) and for the sn-2 chain
(bottom) colored according to the appearance of different structures of
the double bond region of the sn-2 chain: PP (blue), MM (red), PM
(yellow), and MP (green). The bright colors represent conformations
that have the dihedral angle values of either+80°...+160° or
-160°...-80° in the single bonds between the double bonds. The shaded
colors represent reference conformations that are out of this range but
are classified to the nearest conformations.

Figure 5. SOM for the PLPC molecule (top) and its sn-2 chain
(bottom) showing with the size of the neuron the average time for one
visit in each neuron by one of the 36 lipids. The transitions between
the neurons are represented with lines.
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of large lipid assemblies have been lacking. We have applied
free-ware self-organizing map (SOM) software to obtain
information on the main conformations during a 1-ns simulation
of a PLPC bilayer. All main structural features can be easily
distinguished, such as the orientational variability of the
headgroup, the mainly trans state dihedral angles of the sn-1
chain, and both the straight and bent conformations of the
unsaturated sn-2 chain. The map was chosen big enough to show
also the less frequent conformations, which may, however,
present functionally important features. Also the appearance of
local conformations in the double bond region was demonstrated
in the maps of both the whole molecule and the sn-2 chain.
Moreover, to exemplify the possibility for investigation of
conformational dynamics, the trajectory of an individual lipid
molecule was mapped to the neurons. This way the main
transitions can be distinguished from the minor conformational
changes.

The SOM method appears to be a powerful tool that could
be routinely utilized in the analysis of simulation trajectories.
Not only lipids but also other molecules possessing substantial
conformational freedom can be analyzed. Conformations of the
whole molecule or distinct molecular parts can be studied and
additional conformational parameters, such as specific intramo-
lecular distances, may also be used for the needs of specific
applications. However, the SOM-based analysis presented here
does not exclude the need for traditional analysis, i.e., the
examination of quantitative structural and dynamic parameters.
Its merit is in providing, first, a possibility of gaining quick

insight to the molecular features of a complex molecular
assembly without requirements for a priori knowledge. Second,
it offers a sound basis for future studies on membrane
characteristics, such as the determination of the degree of
conformational correlation between neighboring lipids.
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